> 1 <
Author | Message |
rassudok
125 posts |
#113542 01.09.2010 00:25 GMT+03 hours |
Такие фундаментальные конструкты логики как:
1) категория. 2) общее понятие. 3) частное понятие. Являются частными случаями таких фундаментальных конструктов теории множеств как: 1) множество. 2) подмножество. 3) элемент. Почему я так думаю? Потому, что любой объект, имеющий внутреннюю структуру (состоящий из чего-либо) является множеством, а поскольку: 1) категории состоят из общих понятий. 2) общие понятия состоят из частных понятий. То нетрудно догадаться что: 1) категории это множества. 2) общие понятия это подмножества. 3) частные понятия это элементы. Вам привести примеры, подтверждающие этот тезис? Без проблем. Разберём следующие силлогизмы: Силлогизм номер 1. Самолёты это технические системы. Боинги это самолёты. Боинги это технические системы. В данном силлогизме: 1) технические системы это множество. 2) самолёты это подмножество. 3) Боинги это элемент. А потому, как и подобает: 1) множествам. 2) подмножествам. 3) элементам. В данном силлогизме множество технические системы состоит из подмножеств, одним из которых является подмножество самолёты, а подмножество самолёты состоит из элементов, одним из которых является элемент Боинги. Силлогизм номер 2. Млекопитающие это биологические системы. Люди это млекопитающие. Люди это биологические системы. В данном силлогизме: 1) биологические системы это множество. 2) млекопитающие это подмножество. 3) люди это элемент. А потому, как и подобает: 1) множествам. 2) подмножествам. 3) элементам. В данном силлогизме множество биологические системы состоит из подмножеств, одним из которых является подмножество млекопитающие, а подмножество млекопитающие состоит из элементов, одним из которых является элемент люди. Силлогизм номер 3. Граждане США это люди. Сенаторы США это граждане США. Сенаторы США это люди. В данном силлогизме: 1) люди это множество. 2) граждане США это подмножество. 3) сенаторы США это элемент. А потому, как и подобает: 1) множествам. 2) подмножествам. 3) элементам. В данном силлогизме множество люди состоит из подмножеств, одним из которых является подмножество граждане США, а подмножество граждане США состоит из элементов, одним из которых является элемент сенаторы США. И таких примеров можно привести - очень много, а вот контр-примеров привести тут невозможно (если вы считаете, что возможно, то приведите их). А потому, мы вправе сказать что: 1) категории надобно переименовать в логические множества. 2) общие понятия надобно переименовать в логические подмножества. 3) частные понятия надобно переименовать в логические элементы. Также, согласно вышеизложенному: 1) дедукция является операцией логического разбиения: а) множеств на подмножества. б) подмножеств на элементы. 2) индукция является операцией логического объединения: а) элементов в подмножества. б) подмножеств в множества. 3) трансдукция является операцией логического выявления сходств и различий между: а) множествами. б) подмножествами. в) элементами. Также, не лишним будет упомянуть о том, что один и тот же логический конструкт может быть одновременно как множеством, так и подмножеством, так и элементом ибо то, что относительно чего-то одного является множеством, то относительно чего-то другого вполне может быть подмножеством, а относительно чего-то третьего и вовсе может быть элементом. К примеру: 1) человечество это множество. 2) раса это подмножество. 3) субраса это элемент. Теперь логическое разбиение начинаем с расы, то есть – с того, что относительно человечества является подмножеством: 1) раса это множество. 2) субраса это подмножество. 3) суперэтнос это элемент. Как видите, в этом логическом разбиении это подмножество превратилось в множество. Теперь логическое разбиение начинаем с суперэтноса, то есть – с того, что относительно расы является элементом: 1) суперэтнос это множество. 2) этнос это подмножество. 3) субэтнос это элемент. Как видите, в этом логическом разбиении этот элемент превратился в множество. И таких примеров, из которых следует, что то, что относительно чего-то одного является множеством, то относительно чего-то другого вполне может быть подмножеством, а относительно чего-то третьего и вовсе может быть элементом можно привести очень много, а вот контр-примеров привести тут невозможно (если вы считаете, что возможно, то приведите их). Исходя из всего вышеизложенного, мы вправе сказать, что логику следует относить отнюдь не к философии, но относить её (логику) следует к математике, а именно - к теории множеств. |
|
Юрий
932 posts |
#113544 01.09.2010 04:39 GMT+03 hours |
Болтология.
|
|
Знаю, что пока верю, но верю, что узнАю всё.
|
|
hele
6397 posts |
#113552 01.09.2010 09:05 GMT+03 hours |
Конечно, есть логика в философии и есть математическая логика. Только она не относится к теории множеств, это самостоятельная дисциплина.
Например, здесь - курс мат. логики. Из Вики: "Математическая логика (теоретическая логика, символическая логика) — раздел математики, изучающий доказательства и вопросы оснований математики. «Предмет современной математической логики разнообразен.» Согласно определению П. С. Порецкого, «математическая логика есть логика по предмету, математика по методу». ссылка |
|
dusik_ie
2610 posts |
#113569 01.09.2010 11:38 GMT+03 hours |
rassudok hele Вероятно, молодой человек так самоутверждается - открывает сам и для себя, то что давно открыто. Не могу сказать, что это плохо - из-за того, что многие вещи-понятия часто употребляются или стали банальностями, никто особо не заглядывает, а что по сути, они из себя представляют. |
|
ie
|
|
Вадя Ротор
183 posts |
#114152 06.09.2010 18:11 GMT+03 hours |
Ну, открывать самому для себя то, что уже открыто, и экспериментировать с терминами можно и не выставляя это на всеобщее обозрение. Многабукаф можно писать и для себя в тетрадке.
|
|
> 1 <